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Abstract
A characteristic feature of the Gaussian approximation in the functional-integral
approach to the spin-fluctuation theory is the jump phase transition to the
paramagnetic state. We eliminate the jump and obtain a continuous second-
order phase transition by taking into account high-order terms in the expansion
of the free energy in powers of the fluctuating exchange field. The third-
order term of the free energy renormalizes the mean field, and the fourth-order
term, responsible for the interaction of the fluctuations, renormalizes the spin
susceptibility. The extended theory is applied to the calculation of magnetic
properties of Fe-Ni Invar.

PACS numbers: 75.10.Lp, 75.50.Bb, 75.50.Cc, 75.80.+q
Mathematics Subject Classification: 49S05, 82B21, 82D35, 82D40

1. Introduction

Fluctuations of the electron spin density play a predominant role in the thermodynamics of
ferromagnetic metals (see, e.g., [1] and references therein). Most of the progress in the spin-
fluctuation theory (SFT) has been achieved within the functional-integral approach [2, 3].
Using the single-site and static approximation, Hubbard [4], Hasegawa [5] and Grebennikov
et al [6] obtained a quantitative description of magnetic properties at finite temperatures, which
was much better than in the Stoner mean-field theory (figure 1, left). To go beyond the single-
site approximation, Hertz and Klenin [7] suggested a self-consistent Gaussian approximation.
However, it used the static long-wave limit and was restricted to paramagnets. To ferromagnetic
metals, the variational approach [7] was extended by Grebennikov [8] who took into account
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Russia.
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Figure 1. A schematic picture of exchange field configurations in the Stoner mean-field theory
and SFT.

dynamics and space correlations of the fluctuations, the latter again only in the paramagnetic
state. A complete dynamic non-local approximation to the SFT for ferromagnetic metals was
developed by Reser and Grebennikov [9].

The Gaussian SFT [9] shows good agreement with experiment over a wide range
of temperatures. However, at high temperatures, the Gaussian approximation yields a
discontinuous change in magnetic characteristics (see [10] and references therein). The main
reason for the first-order phase transition is that Gaussian approximation implies independent
‘harmonic’ fluctuations of the spin density and thus fails to account for their interaction.

The first-order phase transition has been observed in various versions of the self-consistent
renormalization (SCR) theory of spin fluctuations, developed for weak ferromagnetic metals
(for a review, see [1]). Particularly, in [11] it was argued that the first-order discontinuity
in the SCR theory can be eliminated by taking into account the rotational invariance of the
system. This leads to two integro-differential equations for the longitudinal χ‖ and transverse
χ⊥ susceptibilities. A simple relation that couples χ‖ and χ⊥ was suggested in [12] from the
assumption that the total local spin fluctuation, i.e. the sum of the zero-point and thermal spin
fluctuations, is conserved as it is in the Heisenberg local moment theory and may be somehow
justified for weak ferromagnets.

In the present paper, we improve the coupling of the fluctuations in the Gaussian SFT
[9] by taking into account high-order terms of the free energy of electrons F(V ) in the
fluctuating exchange field V (see [13] for a brief summary). First, in the fourth-order Taylor
expansion of the free energy F(V ), we take a partial average with respect to �V in the third-
and fourth-order terms replacing them by linear and quadratic terms, respectively. Adding
these corrections to the Taylor terms of the first and second order, we come to the extended
function F(V ). The best quadratic approximation is constructed as in [7–9], with the help
of the free energy minimum principle [14], but using the first- and second-order derivatives
of the extended function F(V ). In the final computational formulae, the third-order term
renormalizes the mean field, and the fourth-order term renormalizes the susceptibility (this
includes the Gaussian SFT [9] as a special case with the renormalizations set to unity).

The fundamental difference between our treatment of the high-order terms and the
previous ones is that in our approach the ferromagnetic state is changed self-consistently (for
treatments of the fourth-order term in the paramagnetic state see [1, 15–17] and references
therein). Another advantage of our approximation to the SFT is that the integral equation for
the mean Green’s function (coherent potential equation) is finally reduced to a system of four
nonlinear equations with four unknowns, which is only slightly more complex than the Stoner
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mean-field theory. It is significant to note that solving the coherent potential equation directly
requires a number of additional simplifications, such as neglect of rotational invariance and
the mode–mode ‘frequency’ interactions, and, most important, the single-site approximation
[18, 19].

The extended Gaussian approximation of the SFT is applied to the numerical calculations
of magnetic properties of the Fe0.65Ni0.35 Invar alloy at finite temperatures. This alloy has
been intensively studied recently (see, e.g., [20] and references therein), but mostly at zero
temperature, i.e. without the quantum statistics. Our choice of Fe-Ni Invar to illustrate the
possibilities of the extended SFT is motivated by problems of temperature dependence which
were found in the quantum-statistical treatment of this Invar [10, 21–23]. (Obviously, before
that the new method has been tested on a simplified clean system, such as elemental Fe.)

It is known that Fe-Ni Invar is a complex disordered system. However, the comparison
of the calculation results for the disordered alloy Fe0.65Ni0.35 [10, 21] and ordered compound
Fe3Ni [22, 23] showed that the effect of disorder in the filling of sites with Fe and Ni atoms
on the magnetic properties of Fe-Ni Invar is insignificant. This conclusion agrees with earlier
results for the ordered and disordered Fe0.72Pt0.28 Invars (see, e.g., [24], table 10-1). The weak
influence of the atomic disorder on the magnetic properties of Fe-Ni Invar at finite temperatures
is explained by the integral dependence on the electronic energy structure in all the equations
of the SFT. The details of the initial density of states (DOS) do not exert the decisive effect on
the results of the calculation.

2. Quadratic approximation taking into account high-order terms

2.1. Free energy of electrons in a fluctuating field

The Stratonovich–Hubbard transformation [2, 3] replaces the pair interaction of electrons by
the interaction of the electrons with the exchange field4

V ≡ (V1, V2, . . .), Vj =
∑

α

V α
j (τ )σ α, (1)

fluctuating in space (see figure 1, right) and in ‘time’ τ ∈ [0, 1/T ] (j being the site number,
σα the Pauli matrix, α = x, y, z, and T the temperature, in energy units). Hence, the partition
function can be written as a functional integral

Z = e−F/T =
(∫

e−F0(V )/T DV (τ)

)−1 ∫
e−F0(V )/T e−F1(V )/T DV (τ), (2)

where

F0(V ) = NdT

∫ 1/T

0

∑
j

Sp

(
V 2

j (τ )

2U

)
dτ ≡ Tr

(
V 2

2U

)
(3)

is the energy of the exchange field, and

F1(V ) = T Tr ln G(V ) (4)

is the free energy of non-interacting electrons in the field V expressed in terms of the Green’s
function

G(V ) = (z + μ − H0 − V )−1. (5)

Here, Nd = 5 is the number of degenerate d bands, U is the single-site electron–electron
interaction constant, z is the energy variable, μ is the chemical potential and H0 is the sum of

4 We neglect the charge field, same as in [9].
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kinetic and potential energy of the non-interacting band electrons. The symbol Sp denotes the
trace over spin indices, and Tr stands for the full matrix trace, independent of the particular
representation. To simplify the notation, we omit the band index and write the prefactor Nd in
the trace Tr. In expression (4), we omit the terms independent of the field V (for details, see
appendix A).

2.2. Partial averaging of high-order terms of the free energy

Since H0 and V cannot be diagonalized simultaneously in either coordinate-‘time’ or
momentum-‘frequency’ spaces, exact formulae (4) and (5) are of little use to calculate the
partition function (2) without an appropriate approximation. Therefore, integral (2) is replaced
by a Gaussian integral or, equivalently, the exact expression

F(V ) = F0(V ) + F1(V ) = T Tr

(
V 2

2UT
+ ln G(V )

)
(6)

is replaced by a quadratic form:

F(V ) → F (2)(V ) = Tr(�V A�V ), �V = V − V̄ . (7)

Hence, we arrive at the Gaussian fluctuating field V with the probability density

p(V ) ∝ exp

(
− 1

T
Tr(�V A�V )

)
, (8)

the mean field V̄ and matrix A being the unknown parameters of the SFT to be determined.
Compared to conventional Gaussian SFTs, we take into account the ‘anharmonicity’ of the
fluctuations by renormalizing the parameters V̄ and A.

First, we expand function (6) in Taylor series to the fourth order in �V = V − Ṽ :

F(V ) ≈ F(Ṽ ) + T Tr

(
Ṽ �V

UT
+ G(Ṽ )�V

)
+

1

2
T Tr

(
�V 2

UT
+ (G(Ṽ )�V )2

)

+
1

3
T Tr(G(Ṽ )�V )3 +

1

4
T Tr(G(Ṽ )�V )4, (9)

where Ṽ is some arbitrary value of the exchange field. For the third-order term, we define the
Gaussian partial averaging by the formula

Tr(G�V G�V G�V ) ≈ Tr(G�V G�V G�V ) + Tr(G�V G�V G�V )

+ Tr(G�V G�V G�V ) = 3 Tr(G�V G�V G�V ) (10)

and for the fourth-order term by the formula

Tr(G�V G�V G�V G�V )

≈ 4Tr(G�V G�V G�V G�V ) + 2Tr(G�V G�V G�V G�V )

− 2 Tr(G�V G�V G�V G�V ) − Tr(G�V G�V G�V G�V ), (11)

where the underbrace denotes the averaging with the Gaussian probability density (8):

(. . . �V . . . �V . . .) =
∫

(. . . �V . . . �V . . .)p(V )DV.

In formulae (10) and (11), the combinatorial multipliers correspond to the number of all
possible pairings of the terms �V with the cyclic invariance of the trace taken into account. In
formula (11), the last two terms are chosen so that both sides have equal mean values. These
terms will be omitted for brevity since they do not contain the variable �V and lead only

4
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to a change of an unimportant free term in expansion (9). Furthermore, we approximate the
second term on the right-hand side of (11) by the first one. Thus, relation (11) takes the form

Tr(G�V G�V G�V G�V ) ≈ 6 Tr(G�V G�V G�V G�V ). (12)

Using formulae (10) and (12), we transform the third- and fourth-order terms in expansion (9)
into corrections to the first- and second-order terms, respectively:

F(V ) ≈ F(Ṽ ) + T Tr

(
Ṽ �V

UT
+ G(Ṽ )�V + G(Ṽ )�V G(Ṽ )�V G(Ṽ )�V

)

+
1

2
T Tr

(
�V 2

UT
+ G(Ṽ )�V G(Ṽ )�V + 3G(Ṽ )�V G(Ṽ )�V G(Ṽ )�V G(Ṽ )�V

)
.

(13)

2.3. Quadratic approximation based on the free energy minimum principle

Following [7–9], the best quadratic approximation F (2)(V ) is constructed using the free energy
minimum principle [14].

Define the average with the Gaussian density (8) by the formula

〈· · ·〉 =
( ∫

exp(−F (2)(V )/T ) DV

)−1 ∫
(· · ·) exp(−F (2)(V )/T ) DV,

where F (2)(V ) is a quadratic function of the form (7). Then the identity∫
exp(−F(V )/T ) DV =

∫
exp(−(F (V ) − F (2)(V ))/T ) exp(−F (2)(V )/T ) DV

can be rewritten as( ∫
exp(−F (2)(V )/T ) DV

)−1 ∫
exp(−F(V )/T ) DV = 〈exp(−(F (V ) − F (2)(V ))/T )〉.

Applying the inequality 〈exp f 〉 � exp〈f 〉, f being an arbitrary set of real quantities, and
taking the logarithm, we come to the upper bound for the free energy:

F � F (2) + 〈F(V ) − F (2)(V )〉, (14)

where

F = −T ln
∫

exp(−F(V )/T ) DV, F (2) = −T ln
∫

exp(−F (2)(V )/T ) DV.

To get the ‘best’ approximation in the class of all quadratic functions (7), one minimizes
the right-hand side of (14) to obtain the equation (for details, see [25])〈

∂F (V )

∂V

〉
= 0, (15)

so that Ṽ is equal to the mean field V̄ ≡ 〈Ṽ 〉. The matrix of the quadratic form is given by

A = 1

2

〈
∂2F(V )

∂V 2

〉
. (16)

In the present paper, we apply formulae (15) and (16) to the modified function (13) instead
of the original free energy (6), as it was done in [9]. In expression (13), we average over Ṽ

with the Gaussian density (8), everywhere but in �V , and replace the �V = V − Ṽ terms by
�V = V − V̄ . The averaged linear term in (13) annihilates

T Tr

(
V̄ �V

UT
+ 〈G(Ṽ )〉�V + 〈G(Ṽ )�V G(Ṽ )�V G(Ṽ )〉�V

)
= 0 (17)

5
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identically over �V . Hence, the quadratic form F (2)(V ) contains only the second-order term:

F(V ) ≈ F (2)(V ) = 1

2
T Tr

(
�V 2

UT
+ 〈G(Ṽ )�V G(Ṽ )�V 〉

+ 3〈G(Ṽ )�V G(Ṽ )�V G(Ṽ )�V G(Ṽ )�V 〉
)

. (18)

To simplify expressions (17) and (18) one step further, we introduce yet another partial
averaging:

G�V G�V G�V ≈ (Tr(1))−1Tr(G�V G�V )G�V.

Finally, we replace the average over Ṽ of the product of the Green’s functions G(Ṽ ) by the
product of the mean Green’s functions 〈G(Ṽ )〉 ≡ Ḡ. Hence, relation (17) reduces to

U−1Tr(V̄ �V ) + (1 + η)T Tr(Ḡ�V ) = 0, (19)

and the quadratic form (18) transforms to

F (2)(V ) = 1

2U
Tr(�V 2) +

1

2
(1 + 3η)T Tr(Ḡ�V Ḡ�V ), (20)

where the correction coefficient is

η = (Tr(1))−1Tr
(
Ḡ�V Ḡ�V

)
. (21)

2.4. Equations for the mean field and chemical potential

In the ferromagnetic state, we choose the z-axis along the direction of the mean field:

V̄ = V̄ zσ z.

Then the mean Green’s function is spin-diagonal due to

Ḡx = 0, Ḡy = 0. (22)

Hence, using the well-known relation for the Pauli matrices, Sp(σ ασβ) = 2δαβ , we rewrite
equation (19) as

U−1Tr(V̄ z�V z) + (1 + η)T Tr(Ḡz�V z) = 0. (23)

In order to transform (23) to the mean-field equation, we use the momentum-‘frequency’
representation. Since the exchange field (1) is diagonal in the coordinate-‘time’ representation,
its Fourier transform is homogeneous:

V α
kk′nn′ = V α

k−k′, n−n′ , (24)

where k is the wave vector, taking values in the Brillouin zone, and ωn = (2n + 1)πT are the
thermodynamic ‘frequencies’. Furthermore, the mean field V̄ is a constant in the coordinate-
‘time’ representation, and hence its Fourier transform has the single non-zero coefficient:

V̄ α
qm = V̄ z

00δq0δm0δαz.

Thus, the first term on the left-hand side of (23) reduces to

U−1Tr(V̄ z�V z) = u−1V̄ z
00�V z

00, (25)

where u = U/Nd. Similarly, the mean Green’s function is transitionally invariant in space
and ‘time’: Ḡjj ′(τ, τ ′) = Ḡj−j ′(τ − τ ′); hence its Fourier transform is diagonal:

Ḡ
γ

kk′nn′ = Ḡ
γ

knδkk′δnn′ , γ = 0, z. (26)

6



J. Phys. A: Math. Theor. 43 (2010) 195004 N B Melnikov et al

Therefore, the trace in the second term of (23) can be written as

Tr(Ḡz�V z) =
∑
kn

Ḡz
kn�V z

00 = Tr(Ḡz)�V z
00. (27)

Substituting (25) and (27) to (23), we come to

u−1V̄ z
00 + (1 + η)T Tr Ḡz = 0. (28)

The mean Green’s function Ḡ is related to the mean spin moment (per atom) sz by the
formula (see (B.4) in appendix B)

sz = N−1
a T Tr Ḡz.

Thus, the mean-field equation (28) takes the form

V̄z = −u(1 + η)sz, (29)

V̄z ≡ N−1
a V̄ z

00 being the value of the mean exchange field. The conservation of the total
number of electrons condition (∂F/∂μ = 0) yields the equation on the chemical potential
(see appendix B):

Ne = T Tr Ḡ. (30)

2.5. Equations for the spin fluctuations

The quadratic form (20) is reduced to a sum of squares using the momentum-‘frequency’
representation. By Parseval’s identity, the first term in (20) can be rewritten as

1

U

∑
α

Tr(�V α)2 = Nd

U

∑
qmα

∣∣�V α
qm

∣∣2 = u−1
∑
qmα

∣∣�V α
qm

∣∣2
. (31)

For the trace in the second term of (20), using (24) and (26) we have

Tr(Ḡ�V Ḡ�V ) = Nd

∑
kk1nn1

∑
αβγ1γ2

Ḡ
γ1

kn�V α
k−k1,n−n1

Ḡ
γ2

k1n1
�V

β

k1−k,n1−nSp(σ γ1σασ γ2σβ),

where γ1, γ2 = 0, z. Calculations show that the summands with α �= β are equal to zero (see
appendix C). Hence,

1

2
(1 + 3η)T Tr(Ḡ�V Ḡ�V ) =

∑
qmα

�V α
qmχα

qm�V α
−q−m =

∑
qmα

χα
qm

∣∣�V α
qm

∣∣2
, (32)

where q = k − k1, m = n − n1 and

χα
qm ≡ −1

2

∂2F
(2)
1

∂
(
�V α

qm

)
∂
(
�V α−q−m

)
= −Nd

2
(1 + 3η)T

∑
kn

∑
γ1γ2

Ḡ
γ1

knḠ
γ2

k−q, n−mSp(σ γ1σασ γ2σα) (33)

is the unenhanced dynamic susceptibility. Substituting (31) and (32) to (20), we obtain

F (2)(V ) =
∑
qmα

(
u−1 − χα

qm

)∣∣�V α
qm

∣∣2 ≡
∑
qmα

Aα
qm

∣∣�V α
qm

∣∣2
. (34)

Thus �V α
qm are statistically independent Gaussian fluctuations, with the mean squares of

fluctuations 〈∣∣�V α
qm

∣∣2〉 = T

2Aα
qm

= T

2
(
u−1 − χα

qm

) . (35)

7
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3. Local approximation of the SFT

3.1. Reduction to local fluctuations

Expressing the mean Green’s function Ḡ in terms of the chemical potential μ, mean field V̄z

and fluctuations
〈∣∣�V α

qm

∣∣2〉
, we come to the closed system of equations (29), (30) and (35).

However, this system of equations is still excessively difficult for practical computations of
average quantities, such as magnetization. Moreover, as a result of the quadratic approximation
(34), the fluctuations at different momenta and ‘frequencies’ �V α

qm become independent, which
is an acceptable approximation only at low temperatures. Therefore, we proceed with the local
approximation of the quadratic form (34):

F (2)(V ) =
∑
qmα

Aα
qm

∣∣�V α
qm

∣∣2 ≈
∑

α

Aα
∑
qm

∣∣�V α
qm

∣∣2

=
∑

α

NaA
α

(
1

Na

∑
qm

∣∣�V α
qm

∣∣2
)

≡
∑

α

Aα�V 2
α .

Here, the coefficient Aα ≡ NaA
α is related to the mean square of the local fluctuation

〈
�V 2

α

〉
by the formula

Aα = T

2

〈
�V 2

α

〉−1 = T

2

(
1

Na

∑
qm

〈∣∣�V α
qm

∣∣2〉)−1

,

where

〈· · ·〉 =
( ∫

exp

(
−

∑
α

Aα�V 2
α

/
T

)
dV

)−1 ∫
· · · exp

(
−

∑
α

Aα�V 2
α

/
T

)
dV.

Taking into account (35), for the mean square of the local fluctuation (‘fluctuation’, for short),
we have 〈

�V 2
α

〉 = 1

Na

∑
qm

〈∣∣�V α
qm

∣∣2〉 = 1

Na

∑
qm

T

2
(
u−1 − χα

qm

) . (36)

3.2. Summation over momenta and ‘frequencies’

The calculation of the sum (36) follows [9] and yields essentially the same formulae but with
the renormalization prefactor 1 + 3η for the susceptibility. By analytic continuation from the
points iωm = i2πmT , summation over ‘frequencies’ is replaced by the integration over the
energy variable (for details, see [25]):∑

m

〈∣∣�V α
qm

∣∣2〉 = u

2

2

π

∫ ∞

0

(
B(ε) +

1

2

)
Im

1

1 − uχα
q (ε + i0)

dε, (37)

where B(ε) = (exp(ε/T )−1)−1 is the Bose function. We discard the temperature-independent
term with 1/2, assuming that the zero-point fluctuations are already taken into account in the
initial DOS ν(ε) calculated by the density-functional method and in the effective interaction
constant u. Using the Tailor expansion χq(ε) ≈ χq(0) + iϕqε and approximation

1

eε/T − 1
≈

{
T/ε, ε < ε0 = (π2/6)T ,

0, ε > ε0
(38)

for the Bose function, we come to∑
m

〈∣∣�V α
qm

∣∣2〉 = uT

2λα
q

2

π
arctan

uϕα
q π2T

6λα
q

, (39)

8
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where

λα
q = 1 − uχα

q (0), ϕα
q = d Im χα

q (ε)

dε

∣∣∣∣
ε=0

. (40)

The approximation (38) not only reproduces the behaviour of the Bose function B(ε)

with respect to thermal energies, but also has the same first moment
∫ ∞

0 εB(ε) dε = (πT )2/6,
which essentially defines the upper bound ε0. Thus, the approximation (38) is well justified.
Its other advantage is the possibility of the straightforward proceeding to the static limit at
high temperatures, when the argument of the arctangent in (39) is much larger than unity.

The function λα
q is calculated using the expansion for the static susceptibility:

χα
q (0) ≈ χα

0 (0) + Bαq2, (41)

where χα
0 (0) is the static uniform susceptibility, and the coefficient Bα is obtained from the

local susceptibility χα
L (0) = N−1

a

∑
q χα

q (0). Substituting (41) in the first equality (40), we
get

λα
q = λα

0 +
(
λα

L − λα
0

)
q2/q2, (42)

where λα
0 = 1 − uχα

0 (0), λα
L = 1 − uχα

L (0) and q2 = N−1
a

∑
q q2. The function ϕα

q is
approximated by its mean value:

ϕα
q ≈ N−1

a

∑
q

ϕα
q = ϕα

L . (43)

The summation over q is carried out by the integration over the Brillouin zone,
approximated for simplicity by the sphere of the same volume. Using (39), (42) and (43)
for the local fluctuation (36), we finally obtain

ζ α ≡ 〈
�V 2

α

〉 = uT

2λα
L

∫ 1

0

1

a2
α + b2

αk2

2

π
arctan

cα

a2
α + b2

αk2
3k2 dk, (44)

where

a2
α = λα

0

/
λα

L, b2
α = (

1 − a2
α

)/
0.6, cα = uϕα

Lπ2T
/(

6λα
L

)
.

Relation (44) is obtained using the integration over the Brillouin zone with the Bose distribution
and a simple dispersion relation, whose parameters are chosen to give a correct value of the
local susceptibility. Thus, expression (44) for the mean square of the spin fluctuations is
self-consistent and does not contain any free parameters.

3.3. Mean single-site Green’s function

To calculate the local susceptibility χα
L (ε) = χα

L (0) + iϕα
Lε, we replace the mean Green’s

function Ḡ in (33) by its site-diagonal part:

Ḡjj ′n = Ḡj−j ′, n ≈ Ḡ0nδjj ′ ≡ gnδjj ′ , (45)

so that the Fourier transform is k-independent: Ḡkn = gn. Thus, we rewrite (33) as

χα
L(iωm) = −Nd

2
(1 + 3η)T

∑
n

∑
γ1γ2

gγ1(iωn)g
γ2(iωn − iωm)Sp(σ γ1σασ γ2σα).

Using analytic continuation first from points iωn and then from iωm, we replace the sum over
‘frequencies’ by the integral over the energy variable:

χα
L(z) = −Nd

2π
(1 + 3η)

∑
γ1γ2

∫
Im(gγ1(ε)[gγ2(ε − z) + gγ2(ε + z)]Sp(σ γ1σασ γ2σα))f (ε) dε,

9
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where f (ε) = [exp((ε − μ)/T ) + 1]−1 is the Fermi function, and g(ε) = g(ε − i0). The
2 × 2 matrix g(ε) is spin-diagonal: gx(ε) = gy(ε) = 0, same as Ḡkn (see (22)). Denoting
the diagonal elements of g(ε) by g↑(ε) and g↓(ε), we have g0(ε) = 1

2 [g↑(ε) + g↓(ε)] and
gz(ε) = 1

2 [g↑(ε) − g↓(ε)]. Hence,5

χx
L (0) = −Nd(1 + 3η)

π

∫
Im(g↑g↓) f dε, (46)

ϕx
L = Nd(1 + 3η)

π

∫
Im g↑ Im g↓

(
−∂f

∂ε

)
dε, (47)

χz
L(0) = −Nd(1 + 3η)

2π

∫ (
Im g2

↑ + Im g2
↓
)
f dε, (48)

ϕz
L = Nd(1 + 3η)

2π

∫ [
(Im g↑)2 + (Im g↓)2] (

−∂f

∂ε

)
dε. (49)

Similarly, in equations for the mean field (29) and chemical potential (30), we use the
mean single-site Green’s function (45) and replace the sum over ‘frequencies’ by the integral
over the energy variable. Thus, we rewrite equation (29) as

V̄z = −u(1 + η)
Nd

2π

∫
Im(g↑ − g↓)f dε (50)

and equation (30) as

Ne = Na
Nd

π

∫
Im(g↑ + g↓)f dε. (51)

In formulae (46)–(51), the mean single-site Green’s function is given by

gσ (ε) =
∫

ν(ε′)
ε − σ V̄z − ��σ(ε) − ε′ dε′,

where σ =↑,↓ or ±1 is the spin index, ν(ε) is the non-magnetic DOS and ��σ(ε) is the
fluctuational contribution to the self-energy part, calculated by the formula

��σ(ε) = gσ (ε)ζ z

1 + 2σ V̄zgσ (ε)
+ 2gσ̄ (ε)ζ x, σ̄ ≡ −σ .

The latter is obtained from the coherent potential equation

�� = 〈�V [1 − g(�V − ��)]−1〉
in the second order with respect to the fluctuations �V [9].

3.4. Correction coefficient

Final computational formulae of the extended SFT differ from the ones in [9] by the
renormalization of susceptibility (46)–(49) and the mean field (50) that depend on the
coefficient η defined in (21) (with η = 0, the system of equations reduces to the one in [9]).
Using the single-site and quasi-static approximations, we come to the following expression
for η (see appendix D):

η ≈ 1

πT

[
2ζ x

∫
(Re g↑Im g↓ + Re g↓Im g↑)f dε + ζ z

∫
(Re g↑Im g↑ + Re g↓Im g↓)f dε

]
.

(52)

5 Recall that χx
qm = χ

y
qm due to axial symmetry (for details see appendix C).

10
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Figure 2. The DOS of the d band of non-magnetic Fe0.65Ni0.35, obtained from [26] (——), and the
one smoothed out by convolution with the Lorentz function of the half-width � = 0.001 (– – –).
The energy ε and half-width � are in the units of the bandwidth W = 9.70 eV. The vertical line
indicates the position of the Fermi level εF .

The impact of the corrections due to the third- and fourth-order terms becomes critical at
high temperatures. Therefore, the coefficient η can be estimated by the reduced formula

η ≈ 6ζ̄

πT

∫
Re g0Im g0f dε ≡ c

T
ζ̄ , (53)

where ζ̄ = (2ζ x + ζ z)/3 is the mean fluctuation, and g0 = (g↑ + g↓)/2. In the ferromagnetic
region, formula (53) follows from the initial formula (52) in the approximation g↑ = g↓. In
the paramagnetic region, formulae (52) and (53) coincide.

4. Numerical results

The extended SFT is investigated by the example of the Invar alloy Fe0.65Ni0.35. The initial
non-magnetic DOS ν(ε) (see figure 2) is obtained from the two spin-polarized densities that
are obtained from the self-consistent calculation for the completely disordered Fe0.65Ni0.35

alloy [26]. The experimental value of the spin magnetic moment per atom m
exp
0 = 1.70 μB

(where μB is the Bohr magneton), used to determine the effective interaction constant u, is
taken from [27].

Note that we neglect here the fine effects of atomic and/or magnetic short-range order
(see, e.g., [20, 28] and references therein). Moreover, the magnetic moment m

exp
0 and the DOS

ν(ε) represent the values per averaged atom. However, as stated in the introduction, even with
these initial data one can calculate the temperature dependence of magnetic properties of an
alloy in the SFT.

Figure 3 presents the basic magnetic characteristics for Fe0.65Ni0.35 Invar calculated within
the Gaussian SFT [9]. Clearly, at high temperatures, the calculated magnetization curve does
not fit well enough the experimental one. For the Curie temperature, we obtain TC = 0.83T

exp
C .

But most important, the calculated curve m(T ) has the inflection (see the discussion in [10]).
In [13], we took into account the higher terms in the expansion of the free energy F(V ) by

using the simplified expression (53) for the correction coefficient η with c = −0.015W−1 (W =
9.70 eV is the bandwidth). The calculation showed nearly full agreement with experiment for

11
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Figure 3. The magnetization m(T )/m(0) (—— calculation, ◦◦◦◦ experiment [27]), the mean
square of spin fluctuations ζ x (– · ·–) and ζ z (– – –) in units of um(0)/(2μB), the reciprocal
paramagnetic susceptibility χ−1(T ) (— · —) in units of T

exp
C /μ2

B, and the local magnetic moment
mL(T )/m(0) (· · · · · ·) of Invar Fe0.65Ni0.35 calculated in the Gaussian SFT as functions of the
reduced temperature T/T

exp
C .

Figure 4. As figure 3, but calculated in the extended SFT with expression (52) for η.

the Curie temperature: TC = 1.02T
exp

C (T exp
C = 520 K [27]), for the paramagnetic Curie point:

�C = 1.06T
exp

C , for the effective magnetic moment: meff = 0.90m
exp
eff (mexp

eff = 3.3 μB [29])
and for the local magnetic moment mL(T ) (see the discussion in [22]). As can be seen from
figure 1 in [13], a sharp increase of the fluctuations and a sharp decrease in magnetization at
high temperatures, which occurred in [10], disappear in the extended SFT.

On the whole, the curve for the magnetization in [13] fits the experimental one well
enough. However, the inflection in the temperature dependence, reported in [10], does not
vanish entirely. Therefore, in the present paper, we apply expression (52), which alternates
with T in a self-consistent way. This finally gives a smooth curve without the inflection
(figure 4).

A qualitative analysis of our equations explains the mechanism that leads to a jump
transition of magnetization in the simple Gaussian theory and its elimination in the extended

12
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SFT. Indeed, in the presence of the external magnetic field h, the mean-field equation (29)
takes the form

V̄z(h) = −u(1 + η)sz(V̄z(h) + h).

Hence, for the enhanced magnetic susceptibility, we get

−dsz

dh
= χ0

1 − u(1 + η)χ0
, (54)

where χ0 = −∂sz/∂h is the unenhanced (with constant V̄z) susceptibility of non-interacting
electrons. The fluctuation (44) is proportional to〈

�V 2
α

〉 ∝ 1

1 − u(1 + 3η)χ0
. (55)

The enhanced susceptibility (54) diverges at the critical temperature (the condition of the
transition from the ferromagnetic to paramagnetic state). If, at the same time, the fluctuations
also increase sharply, i.e. the derivative tends to infinity, then there exists an extra (unstable)
solution and hence a jump transition to the paramagnetic state. Such a scenario takes place
in the Gaussian approach (η = 0), where the susceptibility (54) and the amplitude of the
fluctuations (55) diverge simultaneously. In the present variant of the theory (η < 0), the
fluctuations are weakened, and as a result, we observe a continuous magnetic transition.

There are different ways to go beyond the approximation of the non-interacting spin
fluctuations. In this respect, our approach can be treated as a variant of the SCR theory.
Formulae (54) and (55), together with (53), schematically demonstrate the character of our
renormalizations.

5. Conclusions

We have developed an approximation to the SFT that describes the thermodynamics of
magnetic characteristics. Our approach takes into account both dynamics and non-locality
of thermal spin fluctuations, as well as their mode–mode ‘frequency’ interactions. As the
initial data, the calculation employs the value of the magnetic moment and ab initio DOS,
calculated at zero temperature. Further self-consistent treatment of thermal fluctuations,
including ‘large’ non-Gaussian fluctuations, makes the approximation of the SFT applicable
for all temperatures. Particularly, the present theory yields a proper second-order phase
transition from the ferromagnetic to paramagnetic state.
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Appendix A. Relation between the free energy and Green’s function

In this section, we derive the relation between the free energy of electrons in the external field
and the Green’s function used in the main text6. Exact expression for the constant term of the

6 The relation between the thermodynamic potential �1(V ) and the Green’s function G(V ), in the case of an arbitrary
perturbation V, was obtained in [30]. Without a proof the formula analogous to (A.12) was presented in [31].
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free energy allows us to obtain the equation on the chemical potential as the conservation of
the number of the particles condition in the next appendix.

The thermodynamic potential of non-interacting electrons in the external field V is defined
as

�1(V ) = −T ln Tr

[
Tτ exp

(
−

∫ 1/T

0
H ′(V ) dτ

)]
, (A.1)

where the Hamiltonian corresponding to the grand canonical ensemble,

H ′(V ) = H ′
0 + V (τ),

consists of the Hamiltonian H ′
0 = H0 − μNe and the external field

V (τ) =
∑
jσσ ′

Vjσσ ′(τ )a+
jσ (τ )ajσ ′(τ ) =

∑
j

Sp(Vj (τ )ρj (τ )); (A.2)

the interaction representation of an operator O is defined as

O(τ ) = eτH ′
0O e−τH ′

0 .

Here, Tτ stands for the ‘time’-ordering operator and Tr contains the summation over
states with any number of particles. Note that in H ′(V ), μ is the chemical potential,
Ne = ∑

jσ a+
jσ (τ )ajσ (τ ) is the number of the particles operator, a+

jσ and ajσ are the
creation/annihilation operators for Wannier states, and ρj is the local spin density matrix,
with elements

ρjσσ ′ = a+
jσ ′ajσ . (A.3)

The method to relate the thermodynamic potential �1(V ) to the Green’s function

G(V ) = (z − H ′(V ))−1 (A.4)

is to vary the strength of the external field from 0 to V. To this end, we consider

H ′(λ) = H ′
0 + λV, (A.5)

so that H ′(0) = H ′
0 and H ′(1) = H ′(V ). The thermodynamic potential corresponding to

H ′(λ) is

�1(λ) = −T ln Tr

[
Tτ exp

(
−

∫ 1/T

0
H ′(λ) dτ

)]
.

Using formula (A.5), we find the derivative of �1(λ) with respect to λ (cf [30]):

∂�1(λ)

∂λ
=

〈
T

∫ 1/T

0
V (τ) dτ

〉
λ

, (A.6)

where the averaging 〈· · ·〉λ of an arbitrary operator O is defined as

〈O〉λ ≡ Tr
(
O Tτ exp

(− ∫ 1/T

0 H ′(λ) dτ
))

Tr
(
Tτ exp

(− ∫ 1/T

0 H ′(λ) dτ
)) . (A.7)

The general formula (A.6) holds for any perturbation V, not necessarily one-particle
operator. For a non-interacting system, substituting (A.2) for V in (A.6) and rearranging, we
write

∂�1(λ)

∂λ
= T

∫ 1/T

0

∑
j

Sp(Vj (τ )〈ρj (τ )〉λ) dτ. (A.8)

The average of the spin density matrix in the interaction representation is related to the Green’s
function:

〈ρjσσ ′(τ )〉λ = −〈
Tτajσ (τ ) a+

jσ ′(τ + 0)
〉
λ

≡ Gλ
jσσ ′(τ, τ ). (A.9)
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Substituting (A.9) into (A.8), we come to

∂�1(λ)

∂λ
= T Tr(V Gλ).

Integration over λ between 0 and 1 yields

�1(1) − �1(0) =
∫ 1

0
T Tr(V Gλ) dλ, (A.10)

where �1(1) = �1(V ) and �1(0) = −T ln Tr exp(−H ′
0/T ).

The Green’s function Gλ of non-interacting electrons satisfies the equation

Gλ = G0 + λG0V Gλ, (A.11)

where G0 corresponds to H0. Express Gλ from equation (A.11) and substitute to the right-hand
side of (A.10). Using the cyclic property of trace, we get

�1(1) − �1(0) = T Tr
∫ 1

0
(1 − λG0V )−1G0V dλ

= −T Tr
∫ 1

0

d

dλ
ln(1 − λG0V ) dλ = −T Tr ln(1 − G0V ).

Using equation (A.11) and the fact that G1 = G(V ), we come to7

�1(V ) = −T ln Tr exp(−H ′
0/T ) − T Tr ln G0 + T Tr ln G(V ). (A.12)

The free energy F1(V ) is related to the thermodynamic potential �1(V ) by the formula

F1(V ) = −T ln Tr

[
Tτ exp

(
−

∫ 1/T

0
H(V ) dτ

)]
= �1(V ) + μNe,

where H(V ) = H0 + V is the Hamiltonian corresponding to the canonical ensemble, and the
number of electrons Ne is fixed. Hence, formula (A.12) can be rewritten as

F1(V ) = −T ln Tr exp(−H0/T ) − T Tr ln G0 + T Tr ln G(V ). (A.13)

Omitting the first and second terms, that do not depend on V, we come to formula (4) of the
main text. The matrix of the Green’s function (A.4) for the system with Ne electrons reduces
to (see formula (5) in the main text)

G(V ) = (z + μ − H0 − V )−1. (A.14)

Appendix B. Formulae for the total charge and spin moment

In this section, we express the mean spin moment and total number of electrons in terms of
the mean Green’s function.

The Green’s function G(V ) is related to the spin density matrix ρ by formula (A.9):

〈ρ(τ)〉V = G(τ, τ),

where we write 〈· · ·〉V instead of 〈· · ·〉1 defined by (A.7). As any Hermitian 2 × 2 matrix, the
local spin density matrix (A.3) can be expressed as

ρj = ρ0
j σ

0 + ρjσ =
∑

μ

ρ
μ

j σμ,

with the coefficients

ρ
μ

j = 1
2 Sp(σμρj ), μ = 0, x, y, z. (B.1)

7 Recall the formula Tr ln(AB) = Tr ln A + Tr ln B, which is valid for the arbitrary matrices A and B.
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Here, σ 0 is the 2 × 2 unity matrix, and σα (α = x, y, z) are the Pauli matrices. Formulae
(A.3) and (B.1) yield that the scalar component ρ0

j is equal to one half of the local charge:

ρ0
j = 1

2

(
a+

j↑aj↑ + a+
j↓aj↓

) = 1
2 (nj↑ + nj↓) = 1

2nj , (B.2)

and the vector component ρj is equal to the local spin sj = (
sx
j , s

y

j , sz
j

)
. Indeed, writing the

operator sj in the second-quantization form, from (A.3), we find

sα
j =

∑
σσ ′

sα
σσ ′a

+
jσ ajσ ′ =

∑
σσ ′

sα
σσ ′ρjσ ′σ = Sp(sαρj ).

Since the spin operator can be represented by the Pauli matrices: s = 1
2σ, using (B.1), we

obtain

sα
j = 1

2 Sp (σ αρj ) = ρα
j . (B.3)

Relations (A.3), (B.2) and (B.3) lead to
1
2 〈〈nj (τ )〉V 〉 = Ḡ0

j (τ, τ ),
〈〈
sα
j (τ )

〉
V

〉 = Ḡα
j (τ, τ ),

where 〈· · ·〉 is the averaging over all configurations of the field V with the probability density
p(V ) ∝ exp(−�(V )/T ). Introduce the Fourier transform

Gj(τ, τ
′) = T

∑
nn′

Gj(iωn, iω′
n) e−iωnτ eiω′

nτ
′
.

Using the ‘time’-invariance of the mean Green’s function, we have

Ḡj (τ, τ ) = T
∑

n

Ḡj (iωn) ≡ T
∑

n

Ḡjn.

Hence, summing over the sites and bands, we come to the expressions for the total number of
electrons:

Ne = Nd

∑
j

〈〈nj 〉V 〉 = 2NdT
∑
jn

Ḡ0
jn = NdT

∑
jn

Sp Ḡjn = T Tr Ḡ

and the total z-projection of spin moment:

Sz = Nd

∑
j

〈〈
sz
j

〉
V

〉 = T Tr Ḡz, (B.4)

Sx and Sy being equal to zero in the ferromagnetic case, since Ḡx = 0 and Ḡy = 0. Analogously,
for the non-interacting electrons, we have

Ne = T Tr G0. (B.5)

Now consider the total free energy F = −T ln Z, where the partition function Z is defined
by (2). Since μ is the Lagrange multiplier in the expression for the free energy, F = �+μNe,
the equation on μ follows from the extremum condition:

∂F
∂μ

= 0.

The latter is exactly the conservation of the electrons condition. Since F0(V ) does not depend
on μ, differentiation of F with respect to μ yields

∂F
∂μ

= 1

Z

⎛
⎜⎜⎝

∫
e−F0(V )/T e−F1(V )/T ∂F1(V )

∂μ
DV (τ)∫

e−F0(V )/T DV (τ)

⎞
⎟⎟⎠ ≡

〈
∂F1(V )

∂μ

〉
= 0.
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Using formulae (A.13) and (A.14), we come to〈
∂F1(V )

∂μ

〉
= −T Tr〈G〉 + T Tr G0 = 0.

Due to (B.5), we finally obtain〈
∂F1(V )

∂μ

〉
= −T Tr Ḡ + Ne = 0.

The latter is the equation for the chemical potential (30) of the main text.

Appendix C. Axial symmetry relations

In this section, we prove the axial symmetry of the magnetic susceptibility in the ferromagnetic
state: χx = χy (with the z-axis chosen along the field), and hence the axial symmetry of the
fluctuations: ζ x = ζ y .

For given q and m, calculate the susceptibilities

χαβ
qm ≡ −1

2

∂2F
(2)
1

∂
(
�V α

qm

)
∂
(
�V

β
−q−m

)
= −Nd

2
(1 + 3η)T

∑
kn

∑
γ1γ2

Ḡ
γ1

knḠ
γ2

k−q,n−mSp(σ γ1σασ γ2σβ),

where γ1, γ2 = 0, z. First, using the properties of the Pauli matrices, we find

χqm =
χxx

qm χ
xy
qm 0

−χ
xy
qm χxx

qm 0
0 0 χzz

qm

(C.1)

where

χxx
qm = −Nd(1 + 3η)T

∑
kn

(
Ḡ0

knḠ
0
k−q,n−m − Ḡz

knḠ
z
k−q,n−m

)
,

χzz
qm = −Nd(1 + 3η)T

∑
kn

(
Ḡ0

knḠ
0
k−q,n−m + Ḡz

knḠ
z
k−q,n−m

)
and

χxy
qm = iNd(1 + 3η)T

∑
kn

(
Ḡ0

knḠ
z
k−q, n−m − Ḡz

knḠ
0
k−q, n−m

)
. (C.2)

Next, we prove that the non-diagonal elements (C.2) of the matrix (C.1) are equal to zero.
Introducing the new indices, we rewrite the second part of the sum (C.2) as∑

kn

Ḡz
knḠ

0
k−q,n−m =

∑
k′n′

Ḡz
−k′+q,−n′+mḠ0

−k′−n′ .

Using the property Ḡα
kn = (

Ḡα
−k−n

)∗
of the Fourier transformation Ḡα

kn of the real function
Ḡα

j (τ ), we have∑
kn

Ḡz
knḠ

0
k−q,n−m =

∑
k′n′

(
Ḡ0

k′n′Ḡ
z
k′−q,n′−m

)∗
.

Hence, for the non-diagonal element (C.2), we get

χxy
qm = −2Nd(1 + 3η)T

∑
kn

Im
(
Ḡ0

knḠ
z
k−q,n−m

)
.

Since η is real, the latter is also real. On the other hand, matrix (C.1) is Hermitian; hence, χ
xy
qm

must be imaginary. Thus, χ
xy
qm = 0, and the susceptibility χ is diagonal in the momentum-

‘frequency’ representation. Formula (36) yields the required relation for the fluctuations:
ζ x = ζ y .
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Appendix D. Derivation of formula (52) for the correction coefficient η

To calculate the correction coefficient (21),

η = (Tr(1))−1 Tr(Ḡ�V Ḡ�V ), (D.1)

where Tr(1) = 2NaNd, we introduce the Gaussian susceptibility

χ̀α
qm = −Nd

2
T

∑
kn

∑
γ1γ2

Ḡ
γ1

knḠ
γ2

k−q, n−mSp(σ γ1σασ γ2σα), (D.2)

i.e. the susceptibility χα
qm with no account of high-order terms (η = 0). Then formula (D.1)

can be rewritten as

η = − 1

NaNdT

∑
qmα

�V α
qmχ̀α

qm�V α
−q−m = − 1

NaNdT

∑
qmα

χ̀α
qm

〈∣∣�V α
qm

∣∣2〉
. (D.3)

We approximate (D.2) using the single-site Green’s function (45) and the quasi-static
approximation (which implies that the main impact to (D.2) is due to the terms with n−m ≈ n):

χ̀α
qm ≈ χ̀α

00 = −Nd

2
T

∑
n

∑
γ1γ2

g
γ1
0ng

γ2
0nSp[σγ1σασ γ2σα]. (D.4)

Using (D.4), we rewrite (D.3) as

η ≈ − 1

NdNaT

∑
α

χ̀α
00

∑
qm

〈∣∣�V α
qm

∣∣2〉 = − 1

NdT

∑
α

χ̀α
00ζ

α. (D.5)

Due to the cyclic property of trace and the anticommutation relations for the Pauli matrices,
σασβ = (2δαβ − 1)σ βσα , we obtain

χ̀α
00 = −NdT

∑
n

((
g0

0n

)2
+ (2δαz − 1)

(
gz

0n

)2)
.

Replacing the summation over ‘frequencies’ by the integration over the energy variable, we
come to

χ̀α
00 = −Nd

π

∫
Im((g0)2 + (2δαz − 1)(gz)2)f dε. (D.6)

Substituting (D.6) in (D.5) and using the axial symmetry (ζ x = ζ y), we get

η = 1

πT

(
2ζ x

∫
Im((g0)2 − (gz)2) dε + ζ z

∫
Im((g0)2 + (gz)2) dε

)
.

Recalling that g0(ε) = 1
2 [g↑(ε) + g↓(ε)] and gz(ε) = 1

2 [g↑(ε) − g↓(ε)], we finally obtain

η ≈ 1

πT

[
2ζ x

∫
(Re g↑Im g↓ + Re g↓Im g↑)f dε + ζ z

∫
(Re g↑Im g↑ + Re g↓Im g↓)f dε

]
(see formula (52) of the main text).
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